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DYNAMIC ANALYSIS OF FGM NANOBEAMS 
UNDER MOVING LOAD CONSIDERING SHEAR 

DEFORMATION EFFECT 
A. ELMEICHE, M. BOUAMAMA, A. MEGUENI 

 
 

Abstract—This investigation focuses on the dynamic behavior analysis of functionally graded materials (FGM) nanobeams excited by a 
moving concentrated load, based on the nonlocal elasticity theory, taking into account the shear deformation beams effect. The 
government equations of motion are modeled by introducing weak forms into the forced vibratory system, under various orders beams 
theories, while including rotational inertia. The mechanical properties of FGMs nanobeams vary continuously through the thickness 
direction according to the power-law exponent form. Rayleigh-Ritz solutions are employed and combined with Newmark’s method to find 
dynamic vibration analysis responses. A convergence study is established and numerical results are validated with those available in the 
literature to show the reliability and efficiency of current model. Several examples are discussed and examined to determine the impact of 
the nonlocal parameter, material distribution, shear deformation beam effect, slenderness ratio and the velocity of the moving constant load 
on transverse dynamic responses of FGM nanobeams. 

Index Terms—Dynamic analysis, FGM, nanobeams, moving load, shear deformation, nonlocal elasticity, velocity, dynamic responses.  

——————————      —————————— 

1 INTRODUCTION                                                                    
owadays, Nanosciences and nanotechnologies are 
booming thanks to the development of new tools, 
observation and analysis. The term "nano" refer to the 

nanometer scale and more widely for the clearly submicron 
dimensions [1]. Nanoscience is, more simply, the study of the 
fundamental principles of molecules and structures with at 
least a dimension of about 1 to 100 nanometers. These struc-
tures are known as nanostructures [2].  
Nanoscience and nanotechnology cover a much broader field 
of applications with nanomaterials that play a key role in 
many areas, such as automotive, aerospace, building, packag-
ing, tribology, catalysis, environment, etc. In this regard, cer-
tain types of nanostructures such as nanobeam, nanoplate and 
nanotube have been developed for use in modern technologies 
such as Electrical Devices and Atomic Force Microscopes. 
Recently, the dynamic behavior of structural elements with 
FGMs is of considerable importance in the fields of research 
and industry. Typically, these materials are made from a mix-
ture of metal and ceramic, or a combination of materials. The 
ceramic component provides a high temperature because of its 
low resistance to thermal conductivity. FGMs are used in very 
different engineering applications such as automotive, aero-
space, defense, and more recently electronics, nuclear reactors, 
biomedical and transportation. 
 

Most researchers are interested in the static and dynamic 
study of nanostructures. Works based on Eringen's nonlocal 
theory have been published, Eringen, 2002 [3]; Thai, 2011 [4]; 
and Aydogdu, 2009 [5]. Others were used in the vibratory 
study, Wang et al, 2011[6] and Eltaher et al ., 2013 [7] used the 
classical Euler-Bernoulli theory in the vibratory study of 
nanobeams. 
 Moreover other researchers, Wu et al., 2011 [8]; Junghorban, 
2011 [9]; Rahmani and Pedram, 2014 [10] used Timoshenko's 
theory in the study of nanobeam. Lei et al., 2013 [11] studied 
the Kelvin-Voigt viscoelastic damping by Timoshenko's theo-
ry. Other teams have studied the thermal effect on natural 
frequencies of orthopedic nano-plates, Satish et al., 2012 [12]. 
In recent years, nanostructures have attracted a lot of attention 
in terms of research on forced vibratory behavior. Recent re-
search on dynamic response has been done: Kiani, 2010 [13] 
investigated the dynamic response of a single-walled carbon 
nanotube (SWCNT) under a moving nanoparticle based on 
nonlocal theory. Simsek, 2010 [14] studied the forced vibration 
of a single-walled carbon nanotube under a mobile harmonic 
load. Simsek, 2011 [15] determinate the nonlocal effects in the 
forced vibration of a dual carbon nanotube system under a 
moving nanoparticle. Mehrdad, 2015 [16] analyzed  the forced 
transversal vibrations of a closed-walled double-walled car-
bon nanotube system containing a fluid with the effect of the 
compression of the axial load. Hosseini et al., 2017 [17] and Lei 
et al., 2016 [18] have studied the dynamic responses of 
nanobeams in FGM subjected to a constant moving load based 
on the classical Euler-Bernoulli theory. 
The main objective in this research is to present an analysis on 
the dynamic behavior of functionally graded materials (FGM) 
nanobeams subjected to a dynamic punctual constant trans-
versal load that moves by a transient motion, taking into ac-
count the effect of shear deformation beams effect. Based on 
the Eringen's nonlocal constitutive relations, the government 
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equations of motion are derived using Hamilton principle by 
introducing the weak forms into the system. Forced vibrations 
are modeled for all order beam theories, classical, the first-
order and higher-order shear deformation beam theories 
while including rotary inertia. The material properties of 
FGMs nanobeams vary continuously in the thickness direction 
according to the power law exponent form.  Rayleigh-Ritz 
solutions are adopted to discretize the spatial partial deriva-
tives of the system where the displacement components of the 
nanobeams cross section are expressed in a series of simple 
algebraic polynomials and dynamic vibration analysis re-
sponses are also solved numerically using Newmark's tem-
poral integration method. To show the reliability and preci-
sion for present model, the dynamic responses obtained in the 
vibratory analysis are converged towards satisfactory results 
and validated by comparison with those available in the litera-
ture. Several examples are treated and illustrated in graphical 
and tabular form. In this study, the influence of the nonlocal 
parameter, material distribution, shear deformation beam 
effect, slenderness ratio and the velocity of the mobile constant 
load on the transverse dynamic responses of the FGM 
nanobeams are examined and discussed in detail. 

2 MODELING OF FGM NANOBEAMS SYSTEM 
Consider a nanobeam in FGM of length "L", width "b" and 
thickness "h" subjected to a concentrated transverse force "P" 
which moves in a transient motion defined by a speed "vp". It 
is assumed that the nanobeam has a linear elastic behavior 
with Cartesian coordinate system (O, x, y, z) as shown in Fig-
ure 1. 
 

 
FIG.1. FGM NANOBEAM SCHEME UNDER A DYNAMIC MOVING LOAD 

The functionally graded material (FGM) is composed of two 
different extreme materials. The material properties:  Young's 
modulus (E), Poisson's ratio (υ) and the density (ρ), vary con-
tinuously in the thickness direction "h", according to a func-
tion of the volume fractions. Based on the rule of the mixture, 
the effective material properties (P) can be written as: 

= +U U L LP P V P V                                                                  (1) 

PU, PL, VU and VL are the corresponding material properties 
and the volume fractions of the upper and the lower surfaces 
of the nanobeam bound by: 

1U LP V+ =                                                                         (2) 

In this study, the FGM profile of the upper volume fraction is 
assumed to follow the power law form that is written by 
Wakashima [19]: 

1
2

k

U
zV
h

 = + 
 

                                                                   (3) 

(k) is the power law index, non-negative constant (0 )k≤ ≤ ∞ , 

which determines the mixing law variation along the thickness 
of the nanobeam, as shown in Figure 2. Using equation (1), (2) 
and (3), the effective materials properties (P) of the FGM 
nanobeam are expressed as follows: 

( ) (P P )
2

k

U L L
z hP z P
h

 = − + + 
 

                                           (4) 

 

 
 

FIG.2. UPPER VOLUME FRACTION PROFILE (VU) THROUGH THE THICKNESS OF 
FGM NANOBEAM 

3 NONLOCAL BEAM THEORY 
The response of nanoscale structures is different from classical 
theory. According to the nonlocal elasticity beam theory, the 
stress field at an arbitrary point "x" in an elastic continuum 
depends not only on the stress field at the same point, but also 
on the stress at all other parts of the body [20]. This assump-
tion can be expressed as follows: 

2[1 ] :Cµ σ ε− ∇ =                                                              (5) 

Where 2
0( )e aµ =  is the nonlocal parameter, 0( )e is a constant 

appropriate to each material, ( )a  is the internal characteristic 
length [21]. When (a) is zero, we can derive the constitutive 
relation of the classical beam theory. 2∇  is the Laplacian oper-
ator and double dot tensor product.  ( )σ  is the stress tensor, 
(C) is the Hookean elasticity tensor, and ( )ε   is the strain ten-
sor. The general nonlocal constitutive relationships for 
nanobeams are written as follows: 

2
11

2
55

0
0

xx xx xx

xz xz xz

Q
Qx

σ σ ε
µ

σ σ γ
      ∂ − =       ∂       

                             (6) 

The reduced elastic constants are defined by: 

11 2

( )
(1 ( ) )

E zQ
zυ

=
−

  and 55
( )

2.(1 ( ))
E zQ

zυ
=

+
                         (7) 

As (z)E , (z)υ are the Young's modulus and the Poisson's ratio 
respectively, according to the thickness direction (z). xxσ  is the 
axial normal stress. xzσ  is the shear stress. xxε  is the axial de-
formation and xzγ  is the shear deformation. To study the non-
local effect on the nanobeams behavior, the scale coefficient 
( )µ is proposed between 0 and 4 [4]. 
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4 MATHEMATICAL DEVELOPMENT  
Based on the general shear deformation beam theory, the dis-
placements coordinates of any point of the nanobeam are giv-
en as:  

0 0, 0

0

( , , ) ( , ) . ( , ) ( ). ( , )
( , , ) 0
( , , ) ( , )

xu x z t u x t z w x t f z x t
x z t

w x z t w x t

ϕ
ν

= − +
 =
 =

                (8)  

0 ( , )u x t=  and 0 ( , )w x t= are the displacement components 
in the middle of the section and on the mean line of the FGM 
nanobeam respectively along the (x) and (z) axes. 0 ( , )x tϕ =   is 
the distortion, also measured on the middle line of the FGM 
nanobeam. (t) represent the time index. ( )f z is the shape 
function which characterizes the transverse shear and stress 
distribution along the thickness direction (z).  Various order 
beams theories are used in this study: 
Classical beam theory (CBT):  ( ) 0f z =   
First order shear deformation beam theory (FSDBT): ( )f z z=  
High order shear deformation beam theory [22] (PSDBT): 

2

2

4( ) . 1
3

zf z z
h

 
= − 

 
  

The shear correction factor is considered as ks = 5/6 for 
FSDBT. 
In the small disturbances hypothesis, the strain-displacement 
relations of the general beam theories are written as follows: 

0, 0, 0,

'
0

( , , ) ( )

( , , ) ( , , ) ( )

xx x xx x

xz

u x z t u zw f z
x

u x z t w x z t f z
z x

ε ϕ

γ ϕ

∂ = = − + ∂
 ∂ ∂ = + =
 ∂ ∂

                            (9) 

 The equilibrium equations will be obtained from the Ham-
ilton principle: 

2

1

( ( )).dt 0
t

t
K S Vδ δ δ− + =∫                                                        (10) 

The virtual strain energy Sδ :  
.ij ij xx xx xz xz

V V V

S dV dV dVδ σ δε σ δε σ δγ= = +∫ ∫ ∫                                (11) 

0, 0, 0, 0
0 0 0 0

. . . . . . . .
L L L L

c c sd
x xx xS N u dx M w dx M dx Q dxδ δ δ δϕ δϕ= − + +∫ ∫ ∫ ∫  (12) 

, ,c c sdN M M  and Q are the stress resultants defined by:   

( , , , ) .(1, , ( ), '( )).dAc c sd
xx

A
N M M Q z f z f zσ= ∫                 (13) 

The results indicated with an exponent (c) are the conven-
tional ones of the classical beams theory, while the others with 
exponent (sd) are additional quantities incorporating shear 
deformation effects. By substituting the stress-strain relations 
into the definitions of the force and the moment resultants 
from the present theory, we obtain the following constitutive 
equations: 

11 11 11 0,

11 11 11 0,

11 11 11 0,

c
x

c
xx

sd x

N A B E u
M B D F w

E F HM ϕ

          = −            

 and 55 0[ ][ ]Q A ϕ=                       (14) 

The extensional, coupling, bending and transverse shear 
stiffnesses are given as follows: 

2 2
11 11 11 11

2

( , , ) (1, , )dz
h

hA B D b Q z z
+

−
= ∫                                             (15) 

2
11 11 11 11

2

(E ,F ,H ) f(z)(1, z, f(z))dz
h

hb Q
+

−
= ∫                                        (16) 

2 ' 2
55 55

2

[f (z)] dz
h

s hA k b Q
+

−
= ∫                                                       (17) 

The shear correction factor is considered as ks = 5/6 for 
FSDBT. 
Virtual kinetic energy Kδ  : 

( ). . . ( ). . .
V V

K z u u dV z w w dVδ ρ δ ρ δ= +∫ ∫                             (18) 

.. .. ..
0,1 0 2 3 0 0

0
.. .. ..

0,2 0 4 5 0 0,
0

.. .. .. ..
0, 003 0 5 6 0 1 0

0 0

( . . . ). .

( . . . ). .

( . . . ). . . . .

L
x

L
x x

L L
x

K I u I w I u dx

I u I w I w dx

I u I w I dx I w w dx

δ ϕ δ

ϕ δ

ϕ δϕ δ

= − + −

− + +

− + +

∫
∫
∫ ∫

         (19) 

Such as: 
2 2

1 2 3 4 5 6( , , , , , ) ( ).(1, , ( ), , ( ), ( ) ).
A

I I I I I I z z f z z zf z f z dAρ= ∫
   

                                                                                         (20)
 

The virtual potential energy Vδ of the transverse load in 
motion: 

0
0

P( , ). .
L

V x t w dxδ δ= ∫                                                        (21) 

The constant moving load ( , )P x t  can be defined: 
( , ) . ( . )pP x t P x tδ ν= − −                                                      (22) 
Where (.)δ is Dirac delta function, ( )P is concentrated load 

amplitude, ( )nυ is the moving load speed. 
By replacing the equations (12), (19) and (21) in equation (10), 
integrating by parts and obtaining the following equilibrium 
equations: 

.. .. ..
0, 01 0 2 3. . .

c

x
N I u I w I
x

ϕ∂
= − +

∂
                                              (23) 

2 .. .. .. ..
0, 0, 00,2 4 5 12 . . . . . (x . )

c

x xx x p
M I u I w I I w P t
x

ϕ δ ν∂
= − + + + −

∂
      (24) 

.. .. ..
0 0, 03 5 6. . .

sd

x
M Q I u I w I

x
ϕ∂

− = − +
∂

                                     (25) 

The Rayleigh-Ritz solution is adopted to discretize the par-
tial derivatives of components displacement for the forced 
vibratory system and the shape functions are developed in 
terms of the algebraic polynomial series as indicated by the 
following formulas: 

0
1

( , ) ( ). ( )
n

j j
j

u x t x u tϕ
=

=∑ ; 

0
1

(x, t) ( ). ( )
n

k k
k

w x w tψ
=

=∑ ; 
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0
1

(x, t) ( ). ( )
n

p p
p

x tϕ φ ϕ
=

=∑ ; 

0 0( ) 1(x) (1 ) .q j p
j x xϕ + −= − ; 

0 0(k ) 1(x) (1 ) .q p
k x xψ + −= − ; 

0 0(p ) 1(x) (1 ) .q p
p x xφ + −= − ; 

Where ( )iu t  , ( )kw t  and ( )p tϕ are the Ritz’s temporary co-

efficients. ( )i xϕ , ( )k xψ  and ( )p xφ are the Ritz approximations, 
which must satisfy the boundary conditions. (n) is the number 
of polynomials involved in the admissible functions. 0 0( ,q )p  
are the indices of Rayleigh-Ritz test function, they depend on 
the boundary conditions of FGM nanobeams [23]. 
By introducing the equilibrium equations (23, 24 and 25) in the 
nonlocal constitutive relation of Eringen (6), we obtain the 
following differential equations: 

 
..

22 .. ..0 0 0 0
01 2 3 0 11 11 112 21 .( . . . ) ( . . ) 0

u wwI u I I A B E
x x x xx x

ϕ
µ ϕ

  ∂ ∂ ∂∂ ∂ ∂
− − + − − + =  ∂ ∂ ∂ ∂∂ ∂ 

  (26) 

..
22 2 2.. .. ..0 0 0 0

01 2 0 4 5 0 11 11 112 2 2 21 . . (I . I . ) (B . . ) 1 .(P. ( . ))p
u wwI w u I D F x t

x x x xx x x x
ϕ

µ ϕ µ δ ν
    ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ − + − + − − + = − − −    ∂ ∂ ∂ ∂∂ ∂ ∂ ∂    

  (27) 

22 .. .. ..
0 0 0

0 0,3 5 6 0 11 11 11 55 02 21 .( . . . ) (E . . ) A . 0x
u w

I u I w I F H
x x xx x

ϕ
µ ϕ ϕ

  ∂ ∂ ∂∂ ∂
− − + − − + + =  ∂ ∂ ∂∂ ∂ 

                                                            (28) 

After performing the integration by part on equations (26), 
(27) and (28) with weighted functions respectively, 
𝜓𝑖(𝑥) and  ∅𝑖(𝑥) (i = 1,2, ...n), which must satisfy the boundary 

conditions, the weak forms of motion government equations, 
which equates to both the ordinary differential equations, can 
be written in the following final form: 

' ' '' '
11 11 11

0 1 1 1

2 2 2.. .. ..
'

1 2 32 2 20 1 1 1

( ). ( ). (t) ( ). ( ) ( ). ( ) .

( ) 1 ( ). ( ) I 1 ( ). ( ) 1 ( ). ( )

n n nL

i j j k k p p
j k p

n n nL
j k pi J k p

j k p

x A x u B x w t E x t dx

d d dx I x u t x w t I x t
dx dx dx

ϕ ϕ ψ φ ϕ

ϕ µ ϕ ψ µ φ ϕ

= = =

= = =

 
 − + +
 
 

      
 − − − + −     

     

∑ ∑ ∑∫

∑ ∑ ∑∫ 0. [ . ( )] 0c L
idx N xϕ


 − =

 


(29) 

'' ' '' '
11 11 11

0 1 1 1

2 2 2.. .. ..
' '

2 4 52 2 2
1 1 1

( ). ( ). (t) D ( ). ( ) ( ). ( ) .

( ). 1 ( ). ( ) I 1 ( ). ( ) 1 ( ). ( )j

n n nL

i j j k k p p
j k p

n n n

k pi j k p
j k p

x B x u x w t F x t dx

d d dx I x u t x w t I x t
dx dx dx

ψ ϕ ψ φ ϕ

ψ µ ϕ µ ψ µ φ ϕ

= = =

= = =

 
 − + −
 
 

     
+ − − + − − −     

     

∑ ∑ ∑∫

∑ ∑ ∑0

2 2..
'

1 2 20 00 01

. (30)

( ) 1 ( ). ( ) . . ( ) . ( ) ( ). 1 .( . ( . )) .

L

nL LL Lc c
ki k i i i p

j

dx

d dx I x w t dx M x V x x P x t dx
dx dx

ψ µ ψ ψ ψ ψ µ δ ν
=

 
 
 
 
      

    + − + − = − − −               

∫

∑∫ ∫
 

' ' '' '
11 11 11 55

0 01 1 1 1

2 2
'

3 52 2
1 1

( ). ( ). (t) F ( ). ( ) ( ). ( ) . ( ) ( ). ( ) .

( ). 1 . ( ). ( ) 1 ( ). ( )

n n n nL L

i j j k k p p i P p
j k p P

n n

i j j k k
j p

x E x u x w t H x t dx x A x t dx

d dx I x u t I x w t
dx dx

φ ϕ ψ φ ϕ φ φ ϕ

φ µ ϕ µ ψ

= = = =

= =

   
 − + +       

   
+ − − −   

   

∑ ∑ ∑ ∑∫ ∫

∑ 

( )

2

6 20 1

0

1 ( ). ( ) . (31)

. 0

nL

p p
p

Lsd
i

dI x t dx
dx

M x

µ φ ϕ

φ

=

    
   + − +      

  = 

∑ ∑∫ 

           

The coefficients of the test functions in limited integrals are 
called the secondary variables; their specifications are the 
boundary conditions. The Dirac delta function of the transver-
sal moving load in the equation (30) is defined by [24]: 

2

1

( ) 1 2(1) . ( )( ). ( ).
0

n nx
n p p

p
x

f x if x x xf x x x dx
otherwise

δ
− < <− = 
∫    

Where ( )nδ  represents nth derivative of Dirac delta func-
tion. The secondary variables are turned to zero, the govern-
mental differential equation system of the FGM nanobeam 
under moving load is written in the following general form:  

[ ]{ } [ ]{ } { }( ) ( ) ( )K q t M q t F t+ =                                     (32) 
[K] and [M] are the stiffness and mass matrices respective-

ly, their order is [3n × 3n], {q (t)} is the column vector of un-
known Ritz’s temporary coefficients, of the order [3n × 1]. {F 
(t)} is the generalized vector produced by the moving trans-
verse load of the order [3n × 1].    

5 NUMERICAL RESULTS AND DISCUSSIONS 
Dynamic analysis of FGM nanobeams simply supported sub-
jected to forced vibrations is investigated with parameters 
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varying: non local parameters (μ), material distribution (k), 
order of beams theories ( )f z , slenderness ratio (L/h) and the 
moving load speed (vp). The analysis results are determined 
numerically using the Newmark's method with a fixed num-
ber of 400 time steps for a desired precision in the calculation. 
The mixture is composed of ceramic and metal whose me-
chanical properties are illustrated in Table 1. The top side of 
the nanobeam (z = + h /2) is purely ceramic (Alumina), while 
the bottom side (z = - h /2) is purely metal (Aluminum). The 
dynamic responses are calculated at the median reach of the 
nanobeams where the deformations are maximum in this criti-
cal section, with one unit of thickness (h = 1nm). 
 

TABLE 1 
 MECHANICAL PROPERTIES OF THE FGM NANOBEAM 

  

Properties Unit Aluminum (Al) Alumina (Al2O3) 

E 
Ρ 
υ 

GPa 
kg/m3 

- 

70 
2700 
0.23 

380 
3800 
0.23 

 
The non-dimensional transverse dynamic deflection D (t) is 
independent of the material, magnitude of the moving load (P) 
and the geometric properties of the FGM nanobeams; it is 
expressed by the following relation: 

( / 2, )
( )

( / 2)
d

s

w L t
D t

w L
=    

( / 2)sw L is the static deflection, calculated with the material 
property of the lower surface (PL) and solicited by the load "P" 
acting at midspan of the FGM nanobeams, to describe by: 

3.
2 48. .s

L

L P Lw
E I

  = − 
 

   

The maximum transverse dynamic deflection without di-
mensions is defined by: 

max
( / 2, )max( ( )) max
( / 2)

d

s

w L tD D t
w L

 
= =   

 
   

The effects of moving load velocity and moving load pass-
ing are plotted by dimensionless parameters (α) and (t∗) re-
spectively, as follows: 

*,p p

cr

t
t

L
υ υ

α
υ

= =    

Where crυ  is the critical speed defined as [24]: 
1

cr
Lωυ
π

=   

1ω : The first fundamental frequency of the FGM 
nanobeams (rad/s). 
Therefore, when 0t = , the punctual load (P) is in the left sup-
port of the nanobeams ( 0)Px =  and when 1t = , the point load 
(P) has arrived at the right support of the nanobeams ( )Px L= . 
 

 
 
 
 

TABLE 2 

 CONVERGENCE STUDY OF THE DYNAMICS RESPONSES 
 

Number 
of term 

(n) 

Classical theory        Nonlocal theory 

CBT FSDBT PSDBT CBT FSDBT PSDBT 

2 
3 
4 
5 
6 
7 
8 

0.4029 
0.5582 
0.5582 
0.5636 
0.5636 
0.5649 
0.5649 

0.4029 
0.5621 
0.5629 
0.5680 
0.5681 
0.5691 
0.5691 

0.4029 
0.5626 
0.5635 
0.5685 
0.5686 
0.5696 
0.5696 

0.4290 
0.6262 
0.6262 
0.6280 
0.6280 
0.6324 
0.6324 

0.4290 
0.6313 
0.6323 
0.6340 
0.6348 
0.6364 
0.6374 

0.4290 
0.6319 
0.6331 
0.6346 
0.6363 
0.6372 
0.6393 

 
In Table 2, the convergence studies for the maximum transverse 
dynamic deflection (Dmax) of   FGM nanobeam are performed 
by varying the number of polynomials (n) in the spatial dis-
placement for different shear function  (CBT, FSDBT and PSDBT), 
using two theories, local (μ = 0) and non-local (μ = 4) with k = 3,  
α = 0.3 and L / h = 20. It’s seen that the increase in the number of 
terms (n) of Ritz polynomials is important in the convergence of 
Dmax. Arguably, the numerical precision of the maximum trans-
verse dynamic deflection is satisfactory when the number (n) is 
set to 8 in the displacement function. 

TABLE 3 
 VARIATION OF MAXIMUM TRANSVERSE DYNAMIC DEFLECTION FOR 

FGM NANOBEAMS 

 

 
In Table 3, the non-dimensional maximum transverse dynamic 
deflection (Dmax) of simply supported FGM nanobeam is calcu-
lated with the corresponding velocities relative to all order beam 
theories (CBT, FSDBT and PSDBT), for the nonlocal parameters 
(μ = 0 and 4) with k = 0, and compared to that obtained by 
Simsek in Ref. [14]. The length (L) of the nanobeam is assumed to 
be 10 nm and the Poisson's ratio (υ) is taken as 0.3. The results in 
this table are presented without taking into account the effect of 
the Poisson's ratio (υ) in the expression of the reduced stiffness 
coefficient (Q11). 
The comparisons show an excellent agreement between the re-
sults that validate the accuracy of our developed model. Howev-
er, the maximum transverse dynamic deflections (Dmax) calcu-
lated by considering the shear effect (FSDBT and PSDBT) are 
relatively higher compared to those calculated with classical 
Euler-Bernoulli beam theory (CBT), this difference is greater 

μ (nm2) Source α=0.1 α=0.5 α=1 

 
Local  
effect 
 µ = 0 

Present 
CBT 
FSDBT 
PSDBT 
Ref. [14] 
CBT 

 
1.0952 
1.1258 
1.1257 
 
1.0970 

 
1.7043 
1.7520 
1.7518 
 
1.7081 

 
1.5513 
1.5882 
1.5881 
 
1.5481 

Nonlocal  
effect 
 µ = 4 

Present 
CBT 
FSDBT 
PSDBT 
Ref. [14] 
CBT 

 
1.5833 
1.6790 
1.6779 
 
1.6024 

 
2.4113 
2.4519 
2.4528 
 
2.4146 

 
2.1688 
2.3096 
2.3088 
 
2.1655 
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when the nanobeam is modalized with the nonlocal elasticity     
(μ = 4), while the two theories FSDBT and PSDBT give substan-
tially the same results, for different nonlocal parameter (μ=0 and 
4). This implies that the shear deformation beams effect must be 

taken into account in the calculation for the dynamic deflection of 
FGM nanobeams. 
 

 
(a-1)                                                                                                             (a-2) 

 
(b-1)                                                                                                             (b-2) 

 
(c-1)                                                                                                         (c-2) 
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(d-1)                                                                   (d-2) 

 
(e-1)                                                                      (e-2) 

FIG.3. TIME HISTORY OF THE MIDSPAN DISPLACEMENTS  

These figures show the temporal history of the non-dimensional 
transversal dynamic deflection of the midspan FGM nanobeam 
modeled by the high-order shear deformation beam theory 
(PSDBT), for different values of material distribution parameter 
(k) using two different theories, local (classical) and nonlocal. This 
deflection is traced under various dimensionless velocities of the 
moving load (α=0.01, 0.1, 0.3, 0.6 and 1).  
It’s noted that the dynamic deflections are proportional to the 
power law exponent (k), these values become maximal when the 
nanobeam is made in pure metal (k → ∞), this increase of the 
response is due to the increase in amount of metal in the mixture 
which results in a decrease in Young's modulus and flexural 
rigidity. We also note that the dynamic deflections obtained using 
nonlocal theory is much higher to that of classical theory (local) 
because of the small scale effect. 
It can also be observed that the moving load velocities plays a 

crucial role on the vibratory behavior of the FGM nanobeam, the 
critical location of the moving force which does given a maxi-
mum dynamic deflection changes with the values speed, it is 
very significant when α is on the margin of 0.3 to 1 where the 
maximum deflection moves in the middle towards the right end 
of the nanobeam. For low velocities (α = 0.01), the dynamic de-
flection reacts similarly to a quasi-static nanobeam figure (a). 
Consequently, the reduction of moving load speed gives a flexi-
bility to the system which itself generates an instability on the 
form of dynamic responses, it is remarkable in the nonlocal theo-
ry which has a low flexural rigidity (figures a-1 and b-1). When 
the load moves at a faster speed, the FGM nanobeam does not 
have enough time to respond to the force that gives us stability in 
the system and the two theories converge on a single mode of 
vibratory behavior as indicated by figures c, d and e. 
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(a)                                                                                                (b) 

 
(c)                                                                                                  (d) 

FIG.4. VARIATION OF THE MAXIMUM NON-DIMENSIONAL TRANSVERSE DYNAMIC DEFLECTION OF THE FGM NANOBEAMS  

Figure (4) shows the relationship between the velocity of the 
moving load (α) and the maximum dimensionless dynamic de-
flection (Dmax) at the center of FGM nanobeam modeled by the 
Parabolic Shear Deformation Beam Theory (PSDBT), with the 
power law exponent k = 3, using two theories, local (classical) 
and nonlocal, for different slenderness ratio values (L / h = 5, 10, 
20 and 100). However, it is observed that the velocities of the load 
affects considerably on the maximum dynamic deflection; the 
amplitude has the highest rate when the applied speed is in mar-
gin of 50% to 60% of the critical speed, after this value, the in-
crease of the velocities involves a reduction of the maximum 
dynamic deflections. For a dimensionless speed parameter (α) is 
set to 0, this is the case of the static deflection loaded with a con-
centrated force in the middle of the FGM nanobeam. 
In addition, the impact of the slenderness ratio (L / h) is inversely 
proportional to the maximum dynamic deflection; this influence 
is more significant when the nonlocal parameters is included in 
the vibratory analysis; for example, for an aspect ratio (L / h) 
increase from 5 to 20, the highest rate of maximum dynamic de-
flection (Dmax) decreases by 66.86% for the nonlocal theory and a 
slight decrease of 09.76% in the classical theory (local).   
It should also be noted that the importance of the scale effect on 

the maximum dynamic deflection becomes less obvious when the 
FGM nanobeam start to take a higher values of slenderness ratios; 
for example, for L / h = 5, the highest rate of Dmax modeled by 
the nonlocal theory is 198.13% superior than the highest rate of 
Dmax modeled by the classical theory, 43.56% for L / h = 10 and 
09.49% for L / h = 20. For very thin FGM nanobeams (Figure 4d), 
the nonlocal effect on maximum dynamic deflection is negligible. 

6 CONCLUSION  
In this paper, an analytical model is presented to study the dy-
namic behavior of FGM nanobeam traversed by a constant mov-
ing load, based on the constitutive relationship of Eringen, with 
using various order beams theories. The motion equations are 
defined by the Hamilton principle with introduction of weak 
forms in the analysis. The shape functions indicating the dis-
placements of the FGM nanobeams are expressed in a polynomi-
al series of Ritz and the Newmark method is adopted to solve 
numerically the governmental equations of the forced vibratory 
system. Numerical results are validated with those available in 
the literature. The effects of different parameters are also exam-
ined in detail. The main conclusions of this investigation are: 
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 The increased number (n) in the displacement function plays 
a major role in the convergence of dynamic responses; which 
favors the Ritz polynomial in the structures and nanostruc-
tures programming. 

 
 Because of the small-scale affect, the dynamic deflections 

obtained by using the nonlocal theory are always greater than 
that obtained by the classical (local) theory. 

 
 The dynamic responses are proportional to the power expo-

nent (k) of the FGM function, which in turn is inversely pro-
portional to Young's modulus and nanobeam rigidity. 

 
 The transverse dynamic deflections calculated considering the 

shear beam effect (FSDBT and PSDBT) are relatively higher 
compared than those calculated with Euler-Bernoulli theory 
(CBT). 

 
 The critical position of the moving punctual load that corre-

sponds to the maximum value of dynamic deflections is sig-
nificantly influenced by the applied velocity. 

 
 The decreasing in the speeds value of the moving load gener-

ates instability on the dynamic behavior mode of the vibrato-
ry system; these oscillations are very cruel in structures that 
have a low flexural stiffness with consideration of the small-
scale effect. 

 
 The transverse dynamic deflections found by local theory are 

almost independent of the slenderness ratio compared to non-
local theory. 

 
 The scale parameters greatly affect the dynamic deflections of 

the nanobeams that contain a lower slenderness ratio. 
 
 The nonlocal parameter, shear deformation, material distribu-

tion, slenderness ratio and moving load velocity have a deci-
sive impact in the dynamic response analysis of FGM 
nanobeams subjected to forced vibrations. 
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